
How to Test AI-
Based Systems

Bryan	Jones

We	have	all	heard	the	stories	in	the	media	about	AI.	It's	either	going	to	save	the	world	and	solve	all	of	society's	problems,	or	it's	the	greatest	threat	to	humankind	and	it's	going	to	take	all	our	jobs	off	us.



If	you	believe	the	hype	then	AI	will	make	us	more	productive,	do	all	the	boring	jobs	for	us,	do	jobs	we	could	never	do	and	even	be	our	best	friend.	But	if	you	believe	the	doom-sayers	then	AI	will	put	us	all	out	of	work,	turn	us	in	to	
couch	potatoes	and	then	kill	us	off	in	a	Terminator	style	apocalypse!	

Well,	I've	got	some	good	news	and	some	bad	news.	The	bad	news	is	It's	not	going	to	be	the	saviour	of	the	world	and	solve	all	of	society's	problems.	The	good	news	is	that	it's	not	going	to	destroy	the	world	and	that	we're	still	
going	to	need	Software	Testers	to	test	the	AI	systems.	There	is	going	to	be	plenty	of	work	for	us	to	do.	In	fact,	one	of	the	main	drivers	for	that	demand	is	legislation.		



Legislation

EU	AI	Act	
“The	conformity	assessment	body	
will	conduct	an	assessment	of	the	
AI	system,	including	a	review	of	its	
technical	documentation,	testing,	

and	validation.”

US	
The	White	House	Blueprint	for	an	

AI	Bill	of	Rights	

US	Congress	currently	considering	
2	bills	to	regulate	the	use	of	AI	

Organization	for	Economic	Co-
operation	and	Development’s	

(OECD’s)	2019	Recommendation	on	
Artificial	Intelligence

G7	Hiroshima	AI	Process
Global	initiative	to	harmonise	AI	
rules	and	ensure	a	coordinated	
approach	to	AI	governance

EU	AI	Act,	US	Congress	AI	legislation,	G7	Hiroshima,	Australia/India	agreement,	Malaysia	AI	regulation	Act,	Ukraine	AI	regulation	Act	(not	to	mention	using	extensively	in	their	war	against	Russia),	Russia/China	agreement	

Add	to	this	the	problems	that	regularly	hit	news	due	to	over-enthusiastically	rushing	out	AI	projects	into	the	wild.	And	that	makes	everyone	more	nervous.	And	we	expect	a	high	level	of	safety	and	ethical	behaviour	from	an	AI.	
More	so	than	we	do	from	humans.	If	a	self-driving	car	crashes	just	once	it	is	a	problem,	but	humans	do	it	all	the	time.	My	favourite	is	Microsoft’s	Chatbot	Tay	which	went	from	“humans	are	super	cool”	to	full-on	Nazi	in	16	hours	
of	exposure	to	Twitter	users.	Another	is	the	CanadaAir’s	chatbot	that	gave	out	not	existent	flight	advice	and	even	personal	advice	to	customers.	Not	to	mention	all	the	erroneous	facial	recognition	court	cases	that	are	going	on.	

There	is	going	to	be	plenty	of	work	for	us	to	do.



The Elephant in the AI 
Room

But	there	is	an	elephant	in	the	room	when	it	comes	to	conversations	about	AI.	At	the	moment,	almost	everyone	is	taking	about	Generative	AI	and	if	AI	and	Testing	are	mentioned	in	the	same	breath,	it’s	about	AI	in	Test	
Automation	tools.		

As	a	Quality	Engineering	&	Testing	professional	I	need	to	consider	firstly,	How	should	we	use	AI	in	testing?	and	secondly	How	do	we	test	the	AI	based	systems	we	implement?	As	there	are	plenty	of	erudite	people	and	tool	vendors	
to	tell	you	about	how	to	use	AI	to	test	with,	I	am	going	to	focus	exclusively	on	the	second,	but	I’m	not	going	to	go	into	the	details	of	how	AI	works.	Again,	I	will	leave	that	to	more	erudite	folks	than	myself.	

And	by	the	way,	there	are	more	forms	of	AI	than	Large	Language	Models.	ChatGPT	isn’t	the	only	fruit.	

Poll	of	who	has	worked	on	AI,	Data	scientists,	testers	etc	

	So,	How	do	we	actually	test	AI	based	systems?	



How do we 
test AI?

I’ve	got	some	more	good	and	bad	news.	

Good	news	is	that	in	terms	of	Test	Levels	it	looks	pretty	similar	to	what	we	all	know	and	love	as	the	traditional	test	levels	with	just	a	couple	of	new	ones.	

The	Bad	News	is	that	we	are	going	to	have	to	change	the	way	we	approach	testing	and	learn	some	new	skills.	For	me	that’s	good	news	‘cos	I	am	a	permanently	curious,	learnaholic,	but	there	are	a	whole	bunch	of	challenges	
specific	to	AI	systems,	which	means	that	we	have	to	think	in	a	slightly	different	way.



Challenges

• The	Oracle	Problem	
• No	Expected	Results	
• Non-Deterministic	
• Probabalistic	Answers	

• The	code	doesn’t	represent	the	algorithm	
• Data	Complexity	&	Volume	
• Self-Optimising	
• System	Complexity	
• Attempting	to	Mimic	Human	Abilities	
• Bias	
• Test	Coverage?	

It	is	very	difficult	to	say	for	the	output	of	an	AI	with	absolute	certainty	what	is	Right	and	what	is	Wrong.	This	is	The	Oracle	problem.	Not	having	an	Oracle	to	provide	a	definitive	answer.	The	system	deals	in	probabilities	and	is	non-
deterministic,	so	we	can’t	have	Expected	Results	to	put	a	tick	against,	like	we	are	used	to.	

The	code	for	AI	systems	isn’t	the	algorithm.	The	data,	both	historic	and	current,	is.	

The	whole	point	about	AI	is	that	it	is	really	good	at	sifting	through	massive	quantities	of	data	and	finding	patterns.	Often	that	data	isn’t	structured,	making	it	complex.	

Because	the	data	effects	the	behaviour,	the	system	is	self-optimising.	It	changes	its	behaviour	as	it	goes	along.	Run	the	same	data	set	through	it	twice	and	you	won’t	necessarily	get	exactly	the	same	answer.	

The	situations	we	try	to	solve	with	them,	by	their	nature	tend	to	make	them	complex.And	we	are	essentially	trying	to	mimic	human	abilities	that	are	very	difficult	to	precisely	define	in	themselves.	

The	problems	of	bias	are	well	known	in	both	humans	and	AI.	

Lastly,	how	do	we	actually	measure	how	much	testing	we	have	done	and	whether	it	is	enough?	The	usual	mapping	of	tests	to	requirements	doesn’t	apply	in	the	same	way	and	other	traditional	coverage	metrics	are	equally	
inappropriate.		

These	challenges	make	our	skills	as	testers	even	more	valuable	and	as	I	said	the	test	levels	don’t	look	so	different.	So,	what	do	they	look	like?	



Test Levels

Familiar	
• Unit	or	Component	testing,		
• Integration	testing	
• End-to-End	testing		
• UAT	

New	
• Model	Testing	
• Data	Testing		
• Monitor	in	live

We	have	the	Unit	or	Component	testing,	Integration	testing,	End-to-End	testing	and	UAT.	From	that	point	of	view,	it	looks	like	a	standard	simple	SDLC.	In	addition,	we	also	have	Model	Testing	and	Data	Testing	and	at	the	tail-end	
we	have	Monitor	in	live,	which	many	would	argue	is	not	Testing,	but	it	is	critical	to	sustained	quality	and	aligns	with	the	DevOps	philosophy	of	shift	left/shift	right..	

So	far,	so	good.	Let’s	dig	into	these	levels	a	bit	further.	



Component Test

“Automation	without	Requirements”

Forced	

Zeros
Blanks	&	
Nulls

Out	of	
Range	
Values

Formatting	Errors Dupli
catio

ns

Component	test	is	traditionally	Black	Box	based	on	the	requirement	and	possibly	White	Box	based	on	the	code	itself,	but	neither	of	these	really	make	sense	for	AI,	as	the	code	doesn’t	represent	the	behaviour	of	the	model	and	AI	
is	often	referred	to	as	“Automation	without	Requirements”.	We	have	to	take	a	slightly	different	view.		

The	actual	AI	functionality	is	usually	a	library	element	but	they	have	to	be	fed	data	and	it	is	that	data	pipeline	where	our	focus	needs	to	lie.	Does	it	handle	forced	zeros,	blanks,	out	of	range	values,	formatting	issues	and	
duplications?	If	it	transforms	or	normalises	the	data,	does	it	do	it	correctly?	

All	areas	of	testing	that	I’m	sure	we’re	all	familiar	with	and	you	can	apply	the	test	techniques	with	which	you	are	familiar.		

All	of	our	well	known	heuristics	apply	here.	

This	overlaps	with	less	familiar	test	level,	Data	Testing.	



Data Test

Da
ta	
Sci
en
tis
ts	
Ar
e	O

ur	
Fri
en
ds“The	code	is	not	the	algorithm,	

The	data	defines	the	behaviour”	

• Bias	&	Fairness	
• Don’t	forget	Proxies	

• Data	Diversity	and	Representativeness	
• Data	Labelling	and	Annotation	
• Data	Splitting	Problems	
• Statistical	Analysis	

The	code	is	not	the	algorithm,	The	data	defines	the	behaviour,	so	we	need	to	be	very	aware	of	the	impact	that	the	data	has.	This	is	an	area	where	we	need	to	learn	some	more	skills	and	gain	an	understanding	of	Data	Science.	
That	said	we	don’t	want	to	try	to	take	it	away	from	the	Data	Scientists.	Quite	the	contrary,	we	should	make	friends	with	them	and	cozy	up	to	them,	so	we	can	apply	our	critical	thinking	skills	to	what	they	are	doing.	We	can	help	
them	test	their	data	better.	

But	what	should	we	and	the	Data	Scientists	be	looking	for?	

Bias	and	Fairness	Assessment:	Evaluate	the	data	for	biases	and	potential	fairness	issues.	Check	for	underrepresented	groups	or	data	that	may	lead	to	biased	AI	predictions.	But	be	aware	that	the	real-world	data	that	the	system	is	
exposed	to	in	Live	may	also	be	subject	to	biases.	Also	be	aware	that	there	are	Proxies	for	bias,	for	instance	Occupation.	Statistically	some	occupations	tend	to	be	more	one	gender	than	another	e.g.	Nursery	Nurse.	Likewise	
address	areas	can	be	proxies	for	race,	class	or	income	bracket	and	in	some	address	areas	even	age.	All	of	which	can	be	considered	discriminatory	if	used	for	decisions.		Techniques	like	bias	audits,	fairness	metrics,	and	
demographic	parity	analysis,	can	help	expose	this.	Tools	like	Fairlearn	and	AI	Fairness	360	help	us	to	detect	and	mitigate	this.	

Data	Diversity	and	Representativeness:	Ensure	that	the	data	covers	a	wide	range	of	scenarios,	including	edge	cases	and	potential	outliers.	This	diversity	helps	the	AI	system	generalize	better	to	real-world	situations.	A	simple	
statistical	analysis	of	the	distribution	of	the	data	should	indicate	some	issues,	especially	when	compared	to	real-life	data.	

Data	Labelling	and	Annotation:	Labelling	and	Annotation	of	the	training	data	is	an	important	part	of	training	an	AI.	Check	Annotation	data	with	correct	classifications	or	values,	ensuring	consistency	in	labelling.	Too	broad	or	too	
narrow	a	granularity	of	the	definition	of	a	classification	can	cause	inaccuracies.	

Data	Splitting	Problems:	It	is	usual	with	ML	systems	to	provide	it	with	a	large	amount	of	training	data	with	a	smaller	amount	of	data	held	back	for	testing	purposes.	It	is	important	to	check	the	diversity	&	representativeness	of	the	
testing	data.	In	traditional	testing	we	wouldn’t	just	check	the	Happy	Path	

Statistical	analysis	of	the	data	can	used	to	address	these	issues,	which	is	the	Data	Scientists’	realm,	but	it	takes	a	Tester’s	curiosity	and	critical	thinking	to	spot	the	gaps	&	anomalies,	ask	questions	and	find	problems.	

Data	Scientists	are	our	friends!	



Integration Test

Familiar	but	…	

Probabilistic!	

Chained	Probabilities	multiply	

35%	cat,	55%	dog,	15%	blueberry	muffin

The	integration	level	is	familiar,	but	it	does	have	a	slight	complexity.	

AI	systems	are	essentially	probabilistic,	meaning	that	they	initially	output	a	confidence	factor.	A	probability	of	the	answer	being	in	specific	category.	E.g.	35%	cat,	55%	dog	and	15%	blueberry	muffin.	If	you	chain	together	multiple	

AI	systems	you	are	multiplying	the	error	factors,	so	making	harder	to	predict	correctly	and	harder	to	determine	where	it	might	go	wrong.	Not	an	insurmountable	complexity,	but	again	it’s	where	a	Tester’s	curiosity	and	questioning	

comes	in	useful.	Systems	thinking	is	also	essential.	

An	example	of	this	chaining	is	facial	recognition.	First	it	has	to	decide	whether	it’s	a	face	or	not,	before	working	out	who’s	face	it	is.	As	you	can	see	identifying	faces	to	start	with	is	not	always	straight	forward.	



Model Testing

• Statistical	in	nature	
• Large	data	volumes	
• Complex	to	interpret	
• Data	Scientists	are	our	friends	

Still	benefits	from	a	Tester’s	curiosity,	critical	thinking,	system	
thinking,	and	Question	Asking!

Model	Testing	is	a	new	level	but	shouldn’t	be	too	unfamiliar	to	anyone	used	to	thinking	about	testing	in	terms	of	modelling,	but	it’s	not	necessarily	easy.	In	this	phase,	the	primary	focus	is	on	evaluating	the	AI	model's	
performance,	behaviour,	and	predictive	capabilities,	in	isolation	from	the	surrounding	IT.	The	way	to	do	this	is	to	do	statistical	analysis	on	the	processing	of	large	qualities	of	data.	Typically	with	Machine	Learning	systems	you	
would	have	a	huge	data	set	that	would	be	split	in	to	something	around	80%	training	data	and	20%	test	data.			

There	are	tools	to	help	with	validating	the	model,	such	as	on	the	Huggingface	website.	TensorFlow	also	has	tooling	available	and	there	are	other	open	libraries	such	as	PyTorch	and	SciPy	that	can	provide	data	analysis	
functionality.	

The	interpretation	of	that	data	and	the	resulting	outputs	can	be	complex,	so	I	would	recommend	getting	friendly	with	your	Data	Scientists.	They	are	the	experts	in	statistical	analysis,	so	use	them.	

That	said,	the	fundamental	skills	of	a	tester	in	asking	those	awkward	questions	and	revealing	the	gaps	are	just	as	essential	here.	Data	scientist	are	just	as	likely	to	make	mistakes	and	suffer	bias	as	anyone	else.	



End-to-End

• Very	Familiar	
• Beware	of	complexity!	
• Involve	Experts	to	help	decide	what	is	a	
“Right”	answer	

Again	this	is	a	very	familiar	test	level,	but	

Beware	of	that	complexity	of	probabilities.	Just	because	each	of	the	systems	involved	in	the	overall	solution	have	been	tested	it	doesn’t	mean	that	the	final	result	is	good.	Watch	out	for	multiplying	error	factors	and	always	be	

critical	of	data	pipelines.	

If	the	system	is	trying	to	behave	like	an	expert	in	a	certain	field,	then	make	sure	you	involve	an	expert	in	that	field	to	help	decide	what	is	a	“Right”	answer.	



UAT

Pretty	much	the	same But	watch	out	for	Automation	
Bias!

UAT	is	very	much	the	User	Acceptance	Testing	that	we	all	know,	but	…	

Watch	out	for	Automation	Bias.	Automation	bias	is	the	propensity	for	humans	to	favour	suggestions	from	automated	decision-making	systems	and	to	ignore	contradictory	information	made	without	automation,	even	if	that	

information	is	correct.	The	“Computer	says	no”	syndrome.	

One	technique	to	pre-empt	what	the	users	will	do	during	UAT	is	Affordance	Modelling,	and	should	be	used	during	the	earlier	levels	of	testing.	



Monitor in 
Live

•Performance	
•Drift	

•Context,	Concept	or	Model	Drift	
•Data	Drift

Although	Monitoring	in	Live	isn’t	what	a	lot	of	people	would	consider	to	be	a	test	level,	it	is	critical	to	sustaining	the	quality	of	the	system	performance.	Bear	in	mind	that	the	performance	of	an	AI	system	isn’t	necessarily	how	fast	
it	does	stuff.	More	importantly	it	is	how	accurate	it	is.	If	the	accuracy	of	a	cancer	detection	system	decreases	that	could	have	catastrophic	consequences	for	the	individuals	involved.	

When	a	system’s	performance	metrics	decrease	it	is	down	to	Drift.	Normally	Context,	Concept	or	Model	Drift	and	Data	Drift.	Concept	drift	is	when	the	task	that	the	model	was	designed	to	perform	changes	over	time.	For	
example,	imagine	that	a	machine	learning	model	was	trained	to	detect	spam	emails	based	on	the	content	of	the	email.	The	spammers	over	time	change	their	approaches	and	so	the	model	may	become	inaccurate.	

Data	drift	is	when	the	distribution	of	the	input	data	changes	over	time.	An	example	was	a	large	high	street	bank	that	was	using	AI	to	advise	decisions	on	loan	applications.	When	Covid	struck	the	income	characteristics	changed,	
especially	due	to	the	furlough	scheme.	So	the	system	had	to	be	retrained.	

There	are	tools	and	techniques	for	detecting	Drift,	such	as	IBM’s	DetAIL,	so	it	again	comes	down	to	the	Data	Scientist,	but	we	still	need	to	be	asking	those	awkward	questions	to	avoid	any	complacency.	Just	‘cos	it	looks	like	it’s	
working	now,	doesn’t	mean	that	it	will	continue	to	do	so.	

Observability	in	the	non-AI	parts	of	the	system	and	Explainability	are	crucial	factors	to	be	designed	in	to	the	system	for	working	out	what	happened	if	&	when	it	does	go	wrong.	



All the other 
usual stuff

• A11y	
• Usability	
• Security	–	Check	out	Adversarial	Testing	
• Performance	–	but	…	

e.g.	*Accuracy,	Precision,	Recall,	F1-Score,	
Confusion	Matrix,	ROI	(or	value	add),	
Programmability,	Energy/Power,	Throughput/
latency,	GOPS,	frame	rate,	delay,	cost,	footprint

*Accuracy measures how well your AI model performs on new or unseen data. Precision indicates the relevance of results to your target 
audience or problem. Recall shows how comprehensive the results are. F1-score is a measure of the balance between precision and 
recall.

This	is	of	course,	all	the	other	usual	testing	to	consider,	such	as	Accessibility,	Usability	and	Security.	They	are	pretty	much	as	you	would	expect,	but	Security	is	an	interesting	one.	Since	the	data	defines	the	behaviour,	a	malevolent	
actor	could	change	the	behaviour	by	manipulating	the	data.	A	case	in	point	is	Microsoft’s	Chatbot,	Tay.	There	is	an	approach	called	Adversarial	testing	where	you	try	to	do	this	deliberately	to	see	how	the	system	copes.		

And	of	course,	Performance,	but	remember	performance	metrics	aren’t	restricted	to	speed	or	volume.	



Test 
Techniques

Explainability

A/B	Testing

Parallel	Testing

Statistical	Analysis

Exploratory	Testing

Use	Experts

Pairwise/Orthogonal	Testing

In	addition	to	your	usual	testing	techniques	here	are	some	that	are	specifically	applicable	to	AI	systems.	

The	first	up	is	Explainability.	Decision	systems,	AI	and	otherwise,	have	to	be	able	to	explain	the	parameters	that	influence	the	outcome,	such	as	to	prove	the	absence	of	bias	and	give	the	opportunity	to	change	the	inputs	to	
change	the	outcome.	An	example	would	be	that	loan	decision	system	where	a	loan	applicant	can	legally	request	an	explanation	of	why	they	were	refused	a	loan.	There	are	Explainability	tools	out	there	that	can	be	embedded	in	
systems	and	the	AI	legislation	I	mentioned	earlier	requires	any	AI	system	to	be	explainable.	

The	Oracle	Problem	means	that	it’s	difficult	to	definitively	say	whether	a	new	solution	is	working	correctly	or	whether	one	model	is	better	than	another.	One	way	around	this	is	to	run	the	new	system	next	to	the	old	one,	which	is	
Parallel	Testing.	Or	run	the	alternative	versions	next	to	each	other	and	compare,	which	is	A/B	testing.	

As	I’ve	mentioned,	Statistical	Analysis	is	important	to	understand	and	to	use.	You	can	even	do	some	of	it	yourselves	on	a	smaller	scale	or	with	tools	such	as	PowerBI,	dedicated	Python	code	libraries	or	even	Excel.	

I	won’t	explain	Exploratory	Testing	as	I’m	sure	you	all	know	it	well,	but	AI	is	an	ideal	arena	for	Exploration.	This	is	especially	true	for	LLMs	-	Large	Language	Models-	and	Generative	AI	in	general.	Fixed,	documented	Tests	don’t	
really	make	much	sense	with	Generative	AI,	but	taking	a	theme	in	the	form	of	an	exploratory	charter	and	then	exploring	it	in	every	dimension	you	can	think	of,	does.	This	is	very	much	a	case	of	needing	a	Human	In	the	Loop	to	
determine	the	quality	of	the	responses.	GenAI’s	penchant	for	getting	things	wrong	and	hallucinating	is	quite	widely	discussed,	so	the	veracity	of	the	information	provided	also	needs	to	be	checked.	As	for	Image	generation	AI,	only	
a	human	can	judge	the	quality	of	the	output.	

Another	way	around	the	Oracle	Problem	is	to	use	a	genuine	human	oracle.	An	expert.	

Lastly	Pairwise,	Orthogonal	or	All-Pairs	testing	is	a	very	efficient	way	of	reducing	the	number	of	test	cases	required	to	test	a	massive	number	of	permutations.	It	is	a	mathematical	approach,	so	there	are	free	tools	to	help	do	it	as,	
such	as:	Hexawise,	All	Pairs,	Testcover,	pairwise,	Allpairs. 
In	traditional	combinatorial	testing	it	can	typically	reduce	quarter	of	a	million	combinations	down	to	less	than	twenty.			



More Test 
Techniques

Metamorphic	Testing

Adversarial	Testing

Model	Backtesting

Dual	Coding/Algorithm	Ensemble

Coverage	Data

Cross	Validation

Affordances	Modelling

Metamorphic	testing:	This	is	a	technique	where	perturbations	are	introduced	into	the	input	data	and	the	change	in	the	output	data	noted.	It’s	useful	because	it	sidesteps	the	Oracle	problem	to	a	large	degree,	as	you’re	only	interested	in	the	
changes	in	the	output,	not	necessarily	the	values	themselves.	It’s	also	possible	to	automate	metamorphic	testing	to	certain	amount.	
Adversarial	Testing:	This	is	providing	inputs	that	try	to	break	the	system	or	trick	it	in	to	providing	incorrect	answers	or	answers	that	it’s	business	rules	were	not	suppose	to	allow	it	to	reveal.	Often	used	in	Security	testing.	
Model	Backtesting:	A	predictive	model	tested	on	historical	data	is	known	as	backtesting.	This	method	is	widely	used	in	the	financial	sector	to	estimate	the	performance	of	previous	models,	particularly	in	trading,	investment,	fraud	detection,	
and	credit	risk	evaluations.		
Dual	Coding/Algorith	Ensemble:		Similar	to	A/B	and	Parallel	testing.	Multiple	models	utilising	various	algorithms	are	given	the	same	input	data	set,	and	predictions	from	each	one	are	compared.	The	model	that	gives	the	most	expected	
outcomes	is	ultimately	chosen	as	the	default.	It	can	be	used	as	a	development	strategy.	A	large	number	of	models	are	used	with	different	hyperparameters.	It	can	then	be	linked	with	an	optimising	algorithm,	such	as	a	genetic	one	to	select	the	
most	optimal	result	for	the	input	data	and	tune	the	hyperparameters.	
Coverage	Data:	Test	data	sets	designed	such	that	it	results	in	the	activation	of	each	of	the	neural	network's	neurons/nodes.	Don’t	be	fooled	in	to	thinking	that	this	gives	you	full	test	coverage	though.	
Cross	Validation:	Uses	different	portions	of	the	data	to	train	and	test	a	predictive	model	iteratively.	The	overall	goal	is	to	try	to	estimate	how	the	model	will	perform	in	practice	on	unseen	data.	One	of	the	most	popular	cross-validation	
techniques	is	k-fold	cross	validation.	where	the	dataset	is	shuffled	and	split	in	to	K	number	of	groups.	The	model	is	then	trained	with	all	the	groups	except	one,	which	is	used	to	test.	The	results	are	kept,	the	model	cleared	down	and	the	
process	repeated	until	all	groups	have	been	used	to	test.	The	model	should	perform	similarly	each	time.		
Affordances	Modelling:	Affordances	are	essentially	the	properties	of	an	object	that	dictates	how	it	will	be	used.	For	instance	the	handle	on	a	mug.	When	this	is	moved	into	the	virtual	world	we	are	basically	looking	at	how	the	system	will	be	
used	by	the	end	user.	This	provides	Use	Cases	for	us	to	track	back	to	test	cases.	



Summary

It’s	not	big	&	it’s	not	clever,	
but	…	

• Learn	about	AI	&	Data	Science	
• Still	need	all	your	old	favourite	techniques	
• Still	need	to	be	curious,	critical	thinking,	
system	thinking,	and	Question	Asking	

• Embrace	Explainability	
• Data	Scientists	are	your	new	best	friends

So,	to	summarise,	It’s	not	big	and	it’s	not	clever,	but	it	does	require	a	different	way	of	thinking	about	systems.		

So	at	least	learn	the	basics	of	AI	and	Data	Science.	

You	will	still	need	to	use	all	the	old	favourite	test	techniques	but	apply	your	new	understanding	to	them.	The	fundamental	testing	skills	of	curiosity,	critical	thinking,	systems	thing	and	above	all	Question	Asking	are	now	as	ever,	
crucial	to	effective	testing.	Use	your	newfound	knowledge	to	ask	the	awkward	questions	that	testers	are	good	at.			

Explaininability	tooling	will	be	invaluable	if	they’ve	included	it	early	enough.	

And	remember,	Data	Scientists	are	your	new	best	friends.	

There	are	other	more	academic	approaches	to	Testing	AI	out	there	and	it	is	worthwhile	researching	and	staying	up	to	date,	but	this	should	give	you	a	solid,	on-the-ground	approach	to	refine	for	your	own	situations.	And	also	
remember	not	all	AI	systems	are	Machine	Learning	or	Large	Language	Models.	There	are	plenty	of	other	models	out	there	as	well.	



Useful Resources

Websites	
• HuggingFace	
• Fairlearn	
• AI	Fairness	360	
• What-If-Tool	
• DetAIL

Books	&	Papers	
• Artificial	Intelligence	and	
Software	Testing	(BCS)	

• AI	Engineering	:	11	
Foundational	Practices	
(Carnegie	Mellon	
University)	

• Testing	in	the	digital	age	
(Sogeti)

http://huggingface.co
https://fairlearn.org/
https://aif360.res.ibm.com/
https://pair-code.github.io/what-if-tool/
https://youtu.be/q9-0WGo9Zrk?si=4G2v5Cqo-I8wfmLR
https://shop.bcs.org/store/221/detail/workgroup?id=3-221-9781780175768
https://shop.bcs.org/store/221/detail/workgroup?id=3-221-9781780175768
http://insights.sei.cmu.edu
http://insights.sei.cmu.edu
http://insights.sei.cmu.edu
http://insights.sei.cmu.edu
https://www.amazon.co.uk/Testing-digital-age-makes-difference/dp/9075414870
https://www.amazon.co.uk/Testing-digital-age-makes-difference/dp/9075414870


Thank You

Questions?	

Email							Bryan.Jones.QA@gmail.com	

Twitter				@Bryan_QA_Jones	

LinkedIn		bryan-jones-mbcs-96953	

Podcast			Quality	Blether	


